Plantarray植物高通量生理学特征监测系统
一套高通量、以植物生理学为基础的高精度表型系统,可以完成整个植物生长周期中不同环境下的SPAC因子的测量。
以色列Plant-DiTech公司的Plantarray监测系统是一套高通量,以植物生理学为基础的高精度表型系统,可以完成整个植物生长周期中不同环境下的SPAC(Soil-Plant-Atmosphere Continuum, 土壤植物大气连续体)因子的测量。连续不间断的获取阵列内所有植物的监测数据,实时监控和及时调整每个培养容器中的土壤条件,包含土壤水分、盐分。
Israeli Center of Research Excellence facility in Rehovot
>>Plantarray监测系统的主要优点<<
☑ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;
☑ 连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);
☑ 理想的实验平台:
• 全自动 | • 均一检测 |
• 适用于不同类型植物 | • 精确测量 |
• 非破坏性 | • 实现随机分组实验设计 |
☑ 3-4周的实验相当于4-6个月的人工工作;
☑ 操作简单,维护费用几可忽略;
☑ 灵活的设计能够满足任何温室中不同方面的科学研究需求。
☑ 实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;
☑ 实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;
☑ 快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;
☑ 复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。
>>Plantarray监测系统应用领域<<
☑ 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;
☑ 在农作物、蔬菜、树木、药用植物、燃料作物等方面的育种研究;
☑ 根系的土壤穿透力、水通量研究;
☑ 生物激素与养分研究;
☑ 生理生态学研究等。
>>Plantarray监测系统测量参数<<
☑ 直接测量特性:
• 重量 | • 空气湿度 |
• 空气温度 | • 气压 |
• 辐射(PAR) | • 土壤水分 |
• 土壤电导率 | • 土壤温度 |
• 日蒸腾 |
☑ 计算特性:
• 植物生物量增益 | • 日蒸腾 |
• 水分利用效率 | • 气孔导度 |
• 抗胁迫因子 | • 水分相对含量 |
• 根穿透力 | • 根系水通量 |
• VPD |
>>参考文献<<
Negin et. al., (2016) The advantages of functional phenotyping in pre-field screening for drought-tolerant crops. Functional Plant Biology DOI: 10.1071/FP16156.
Faber et. Al., (2016) Cytokinin activity increases stomatal density and transpiration rate in tomato. Journal of Experimental Botany DOI: 10.1093/jxb/erw398.
Halperin et. Al., (2016) High-throughput physiological phenotyping and screening system for the characterization of plant–environment interactions. The Plant Journal 10.1111/tpj.13425.
Xu et. al., (2015) Natural variation and gene regulatory basis for the responses of asparagus beans to soil drought. Frontiers in plant sciences DOI: 10.3389/fpls.2015.00891.
Lugassi et. al., (2015) Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration. Frontiers in plant sciences DOI:10.3389/fpls.2015.01114.
Moshelion and Altman, (2015) Current challenges and future perspectives of plant and agricultural biotechnology. Trends in Biotechnology. 33, 337-342.
Moshelion et. al., (2014) Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield. Plant Cell & Environment DOI: 10.1111/pce.12410.
Bedada et. al., (2014) Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts. BMC Genomics DOI: 10.11861471-2164-15-995.
Tracy Lawson et. al., (2014) Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behavior. New Phytologist DOI: 10.1111nph.12945.
Kelly et. al., (2014) Relationship between hexokinase and the aquaporin PIP1 in the regulation of photosynthesis and plant growth. PLoS One. 9 : DOI:10.1371/ journal.pone.0087888.
Kelly et. al., (2013) Hexokinase mediates stomatal closure. The Plant Journal 75, 977–988 DOI: 10.1111/tpj.12258.
Nir et. al., (2013) The Arabidopsis gibberellin methyl transferase 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato. Plant cell and Environment 37, 113–123.
Sade et. Al., (2012) Risk-taking plants: Anisohydric behavior as a stress-resistance trait. Plant Signaling & Behavior DOI org/10.4161/psb.20505.
Sade et. al., (2010) The Role of Tobacco Aquaporin1 in Improving Water Use Efficiency, Hydraulic Conductivity, and Yield Production Under Salt Stress. Plant Physiology 152:1-10.
Wallach et. al., (2010) Development of synchronized, autonomous, and self-regulated oscillations in transpiration rate of a whole tomato plant under water stress. Journal of Experimental Botany 61:3439–3449.
Sade et. al., (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SLTIP2;2 a key to isohydric to anisohydric conversion? New Phytologist. 181: 651–661.